miércoles, 27 de febrero de 2019

3.38 Estructura y generación del tubo de Coolidge



El tubo de coolidge, también conocido como «tubo de cátodocaliente», ha estado en uso desde entonces con algunas modificaciones sobre el diseño básico. Funciona en un alto vacío, de unos 10−4 pa, o 10−6 torr y los electrones son generados por emisión termoiónica en un filamento de wolframio —el cátodo— calentado por una corriente eléctrica. El haz de electrones emitido por el cátodo es acelerado aplicando una diferencia de potencial entre el cátodo y el ánodo; al colisionar con el ánodo, los electrones producen rayos x por los mismos procesos que en el tubo de crookes.TiposEsquema de un tubo de ánodo rotatorio. A: ánodo; R: rotor; T: área donde incide el haz de electrones; C: cátodo; E: superficie del tubo en vacío; S: estátor; O: volumen ocupado por el aceite refrigerador; B: fuelle que permite la expansión termal del aceite; W: ventana de salida de los rayos XÁnodo rotatorioEl tubo de ánodo rotatorio es un tubo de Coolidge en el que se hace girar el ánodo mediante inducción electromagnéticagenerada por estátores situados alrededor del tubo. Al girar, el calor generado por el impacto del haz de electrones se distribuye sobre una mayor superficie, lo que permite aumentar la intensidad del haz de electrones en aplicaciones que requieran una alta dosis de rayos X.Tubos de microfocoCiertas técnicas, como la microtomografía, precisan de imágenes de muy alta resolución que pueden conseguirse usando un haz de rayos X de sección reducida. Los tubos de microfoco producen haces con un diámetro típico menor de 50 µm in diameter. Los tubos de microfoco de ánodo sólido son similares a un tubo de Coolidge convencional, pero con el haz de electrones incide sobre una área muy pequeña del ánodo, normalmente entre 5 y 20 µm; la densidad de potencia del haz de electrones está limitada a un valor máximo de 0.4-0.8 W/µm para no derretir el ánodo, por lo que estas fuentes son poco potentes, por ejemplo, 4-8 W para un haz de electrones de 10 µm de diámetro.Cátodo de nanotubos de carbonoEl cátodo empleado en los tubos convencionales se puede reemplazar por una serie de nanotubos de carbono que emiten electrones al aplicárseles un voltaje, en vez de por calentamiento, como el filamento de wolframio, por lo que pueden funcionar a temperatura ambiente. Este diseño fue concebido por un grupo de científicos de la Universidad de Carolina del Norte y patentado en el año 2000. Además de mejorar el consumo de energía, este diseño presenta ventajas en aplicaciones que requieran imágenes de objetos en movimiento: los haces de electrones provenientes de distintos nanotubos emiten rayos X en direcciones distintas, por lo que no es necesario mover el aparato, como ocurre con los tubos con un único filamento, lo que resultaría en imágenes más nítidas.


https://www.coursehero.com/sitemap/schools/3405-University-of-Santo-Tomas/

3.37. Los rayos X



Los Rayos X fueron descubiertos en 1895 por Roëntgen, y fueron el primer ejemplo conocido de radiación ionizante de naturaleza electromagnética. Los Rayos X se producen por el choque contra la materia de electrones acelerados a gran velocidad. En cualquier aparato de Rayos X existe un cátodo emisor de electrones y un ánodo conectado a un potencial fuertemente positivo respecto al cátodo, que atrae a los electrones y que les sirve de blanco contra el que éstos chocan. En general, en los tubos de rayos X actuales, se emplea tungsteno como cátodo, y se ha conseguido una modulación muy fina de la energía de las radiaciones emitidas, y por tanto, de su penetración, a fin de conseguir imágenes más definidas.

Los rayos X son radiaciones electromagnéticas de longitud de onda corta, que se propagan en línea recta y a la velocidad de la luz. Tiene gran capacidad de penetración, por lo que se utilizan para obtener imágenes para el diagnóstico. Su poder ionizante es débil, aunque esto no quiere decir que en determinadas circunstancias no puedan causar lesiones.

Los Rayos X constituyen el Principal riesgo de irradiación por vía externa, produciéndose en los generadores de radiodiagnóstico (aparatos de Rayos X), en los microscopios electrónicos, en los tubos catódicos de los televisores, etc. Los rayos X no se huelen, no se oyen y no se sienten. Al colisionar con la materia producen distintos tipos de efectos; entre los principales están:

  Ionización: producen pares iónicos de dos formas, primaria (por la propia ionización) y secundaria (por las radiaciones emergentes) 8  Fluorescencia: si inciden los rayos X con materiales capaces de emitir luz, dicho efecto se aplica en imagen para el diagnóstico

 Fotoquímico: cuando incide sobre materiales fotográficos produce un efecto en las emulsiones fotográficas que da lugar a un ennegrecimiento tras el revelado. Esta propiedad se emplea en diagnóstico por la imagen (con rayos X) y en dosimetría (dosímetro de película)

 Biológicos: si interactúan con seres vivos se manifiestan como daños.

https://astrojem.com/radiacionelectromagnetica.html
https://es.wikipedia.org/wiki/Rayos_X

3.36. Radioactividad



La radiactividad fue descubierta por el científico francés Antoine Henri Becquerel en 1896 de forma casi ocasional al realizar investigaciones sobre la fluorescencia del sulfato doble de uranio y potasio. Descubrió que el uranio emitía espontáneamente una radiación misteriosa. Esta propiedad del uranio, después se vería que hay otros elementos que la poseen, de emitir radiaciones, sin ser excitado previamente, recibió el nombre de radiactividad. El descubrimiento dio lugar a un gran número de investigaciones sobre el tema. Quizás las más importantes en lo referente a la caracterización de otras sustancias radiactivas fueron las realizadas por el matrimonio, también francés, Pierre y Marie Curie, quienes descubrieron el polonio y el radio, ambos en 1898

La naturaleza de la radiación emitida y el fenómeno de la radiactividad fueron estudiados en Inglaterra por Ernest Rutherford, principalmente, y por Frederick Soddy. Como resultado pronto se supo que la radiación emitida podía ser de tres clases distintas, a las que se llamó alfa, beta y gamma, y que al final del proceso el átomo radiactivo original se había transformado en un átomo de naturaleza distinta, es decir, había tenido lugar una transmutación de una especie atómica en otra distinta. También se dice (y esta es la terminología actual) que el átomo radiactivo ha experimentado una desintegración. La radiactividad es una reacción nuclear de "descomposición espontánea", es decir, un nucleido inestable se descompone en otro más estable que él, a la vez que emite una "radiación". El nucleido hijo (el que resulta de la desintegración) puede no ser estable, y entonces se desintegra en un tercero, el cual puede continuar el proceso, hasta que finalmente se llega a un nucleido estable. Se dice que los sucesivos nucleidos de un conjunto de desintegraciones forman una serie radiactiva o familia radiactiva.


https://www.foronuclear.org/es/el-experto-te-cuenta/119402-que-es-la-radiactividad

3.35 Radiación y Radiobiología


La radiación propagada en forma de ondas electromagnéticas (rayos UV, rayos gamma, rayos X, etc.) se llama radiación electromagnética, mientras que la llamada radiación corpuscular es la radiación transmitida en forma de partículas subatómicas (partículas α, partículas β, neutrones, etc.) que se mueven a gran velocidad, con apreciable transporte de energía. Si la radiación transporta energía suficiente como para provocar ionización en el medio que atraviesa, se dice que es una radiación ionizante. En caso contrario se habla de radiación no ionizante. El carácter ionizante o no ionizante de la radiación es independiente de su naturaleza corpuscular u ondulatoria. Son radiaciones ionizantes los rayos X, rayos γ, partículas α y parte del espectro de la radiación UV entre otros. Por otro lado, radiaciones como los rayos UV y las ondas de radio, TV o de telefonía móvil, son algunos ejemplos de radiaciones no ionizantes.

La radiobiología es el estudio de la acción biológica de las radiaciones sobre la materia, lo que impulsa el conocimiento y desarrollo de una disciplina tan importante en nuestros dias como es la Radiología y la Medicina fïsica. Conocer los mecanismos biológicos de lo que ocurre cuando el individuo se expone a radiaciones tanto ionizantes como no ionizantes, junto con avances físicos, ha impulsado el perfeccionamiento y avance de especialidades del campo de la Radiología, como son la Radioterapia, la Medicina Nuclear, la Protección Radiológica y la Medicina Física.

http://www.encuentros.uma.es/encuentros72/radiobiologia.htm



3.34. Elementos básicos de la física nuclear



Es una pequeña región central del átomo donde se encuentran distribuidos los neutrones y protones, partículas fundamentales del núcleo, que reciben el nombre de nucleones.La estabilidad del núcleo no puede explicarse por su acción eléctrica. Es más, la repulsión existente entre los protones produciría su desintegración. El hecho de que en el núcleo existan protones y neutrones es un indicador de que debe existir otra interacción más fuerte que la electromagnética que no está directamente relacionada con cargas eléctricas y que es mucho más intensa. Esta interacción se llama nuclear y es la que predomina en el núcleo.



http://www.escritoscientificos.es/trab1a20/nuclear.htm

3.33. Radiaciones no ionizantes y no ionizantes



RADIACIONES IONIZANTES.
 Corresponden a las radiaciones de mayor energía (menor longitud de onda) dentro del espectro electromagnético. Tienen energía suficiente como para arrancar electrones de los átomos con los que interaccionan, es decir, para producir ionizaciones.
RADIACIONES NO IONIZANTES
Son aquellas que no poseen suficiente energía para arrancar un electrón del átomo, es decir, no son capaces de producir ionizaciones.


http://rinconeducativo.org/contenidoextra/radiacio/2radiaciones_ionizantes_y_no_ionizantes.html

3.32. Ionización de los fluidos


IONIZACIÓN DE LOS FLUIDOS


Un elemento que tenga la capacidad de ionizar fluidos es de gran utilidad ya que puede permitir la eliminación de impurezas en sus procesos de uso o ciclos naturales donde por la gran contaminación ambiental existente impacta cuando son para emplearse en el riego de cosechas. El agua dulce es el recurso renovable más importante, pero la humanidad está desperdiciando y contaminándolo; además lo está utilizando sin dar tiempo a su recuperación. Efectivamente, las aglomeraciones en las grandes ciudades, “la mejora en la calidad de vida”, el rápido desarrollo industrial, el incremento del turismo y la agricultura, “las actividades de ocio”, entre otras acciones. Hacen que este escaso porcentaje se vaya reduciendo de forma natural y que su composición se vea notablemente alterada. Para agravar el problema, el ciclo hidrológico es cada vez menos previsible ya que el cambio climático altera los patrones de temperatura establecidos en todo el planeta. Los fenómenos que suceden en la materia y la transferencia de energía entre sus enlaces atómicos en donde los átomos donan electrones y el otro se vuelve receptor se denomina ionización. La ionización es entonces el proceso químico o físico mediante el cual se producen iones que pueden ser desprendidos, estos son átomos o moléculas que tiene una mayor carga eléctrica debido al exceso o falta de electrones respecto a un átomo o molécula neutra. A la especie química con más electrones que el átomo o molécula neutra se le llama anión, posee una carga neta negativa, y a la que tiene menos electrones catión, teniendo una carga neta positiva. Hay varias maneras por las que se pueden formar iones de átomos o moléculas. La energía de ionización es la cantidad de energía necesaria para separar completamente el electrón que está más débilmente unido en la última orbita electrónica de un átomo en su estado fundamental, de tal manera que en el electrón arrancado no quede ninguna energía residual (ni potencial ni cinética) en este caso se denomina primera energía de ionización y el potencial eléctrico equivalente, la energía dividida por la carga de un único electrón la cual se conoce como el potencial de ionización. Estos términos también se emplean para describir la ionización de las moléculasT y los sólidos, pero los valores no son constantes debido a que la ionización puede estar afectada por factores como: la temperatura, la química y la geometría superficial. Esta energía de ionización está dado en las unidades del sistema internacional, (SI) por J/mol, aunque se usan con más frecuencia los KJ/mol, cuando se refiere a cantidades molares y eV (electrón-voltio) cuando se refiere a átomos individuales. En los iones negativos, aniones y en cada electrón, del átomo originalmente neutro, está fuertemente retenido por la carga positiva del núcleo. Al contrario que los otros electrones del átomo, en los iones negativos, el electrón adicional no está vinculado al núcleo por fuerzas de Coulomb, lo está por la polarización del átomo neutro. Debido al corto rango de esta interacción, los iones negativos no presentan series de Rydberg, pero sólo unos pocos, de los que hay, son estados excitados asociados. Estos iones positivos son de lo que forman la mayor parte de los metales.

http://sappi.ipn.mx/cgpi/archivos_anexo/20082448_6169.pdf

3.31. Cualidades de la luz Sistema visual humano.


Cualidades de la luz


Calidad

Describe la relación existente entre el tamaño de la fuente que emite la luz y el del objeto que estamos fotografiando. De ella depende que las sombras aparezcan suavizadas o adquieran una presencia marcada. Nos interesa conocer dos tipos de luz: la dura y la suave.

Color

Nosotros no vemos los objetos de nuestro entorno del color que realmente tienen. De hecho, el color no es una característica intrínseca de los objetos, sino que está determinado, por un lado, por la forma en que el objeto interacciona con la luz blanca, y, por otra parte, por la manera en que nuestros ojos y nuestro cerebro interpretan la información que reciben.

Dirección

Esta propiedad está asociada a las rectas imaginarias que, de alguna forma, nos indican la trayectoria que sigue la luz. Pero lo realmente importante es que la dirección de la luz nos permite reforzar o suavizar el volumen, el color y la forma del objeto que estamos fotografiando. A la hora de iluminar un objeto o una escena tenemos cinco opciones.

Intensidad

Nos indica qué cantidad de luz está presente en la escena que queremos fotografiar, y es necesario identificarla correctamente si queremos que nuestra fotografía quede bien expuesta. La subexposición se produce cuando la cantidad de luz es deficiente, y provoca una pérdida importante de información en la zona de tonos claros

Sistema visual humano


Aunque suele decirse que el ojo humano es el órgano de la visión, en realidad es más correcto decir que es el órgano en el que comienza la visión, la primera etapa de lo que suele denominarse el “sistema visual humano”.. La visión humana es un proceso complejo y apasionante, del que en la actualidad probablemente desconocemos mucho más de lo que conocemos. Son numerosas las disciplinas científicas (óptica, fisiología, neurología, psicología, etc.) que investigan sobre distintos aspectos del sistema visual humano. Todas ellas intentan dar explicaciones a las distintas etapas del complicado proceso que hace que, a partir de la luz emitida por las fuentes o reflejada por los objetos, mediante su absorción en los fotopigmentos retinianos y la transmisión de una serie de impulsos eléctricos a través de nuestro sistema nervioso, se forme finalmente en nuestro cerebro una determinada imagen del mundo exterior.


https://www.xatakafoto.com/trucos-y-consejos/las-cuatro-propiedades-de-la-luz-que-tenemos-que-dominar-con-todo-detalle
https://www.lucescei.com/estudios-y-eficiencia/extractos-libro-blanco-de-iluminacion/el-sistema-visual-humano/



3.30. La luz y el espectro electromagnético


La luz es forma de energía que nos permite ver lo que nos rodea. Es toda radiación electromagnética que se propaga en formas de ondas en cualquier espacio, ésta es capaz de viajar a través del vacío a una velocidad de aproximadamente 300.000 kilómetros por segundo. La luz también se conocida como energía luminosa. Existen diferentes fuentes de luz que las podemos clasificar en naturales y artificiales. El Sol es la principal fuente natural e importante de luz sobre la Tierra. En cuanto a las fuentes artificiales se estaría hablando de la luz eléctrica de una bombilla, la luz de una vela, de las lámparas de aceite, entre otras.



Espectro electromagnético


Ondas electromagnéticas, espectro visible, rayos X, luz ultravioleta, infrarrojos

Se denomina espectro electromagnético a la distribución energética del conjunto de las ondas electromagnéticas.   Referido a un objeto, el espectro electromagnético o simplemente espectro es la radiación electromagnética que emite (espectro de emisión) o absorbe (espectro de absorción) una sustancia cualquiera, ya sea en la Tierra o en el espacio estelar.     En este sentido, el espectro sirve para identificar cualquier sustancia. Es como una huella dactilar de un cuerpo cualquiera. Los espectros se pueden observar mediante espectroscopios, con los cuales, además, se pueden medir la longitud de onda, la frecuencia y la intensidad de la radiación.


https://conceptodefinicion.de/luz/
https://astroje 1



3.29. Biofísica de la percepción auditiva y Audimetro



La audición es una parte importante en la vida del ser humano, hablaremos del factor fisiológico, el cual se debe tener en cuenta ya que incide en la percepción final del sonido. Este factor es el hecho de que disponemos de un sistema periférico: el aparato auditivo. El oído es el órgano receptor en donde comienza el estímulo acústico, el cual se convierte en sensación sonora. El odio nos permite captar una gran diversidad de sonidos, es por esto que la audición no solo es importante para captar sonidos sino también para comunicarnos. Las orejas o pabellones auriculares tienen una serie de pliegues que favorecen la captación de las ondas sonoras. El sonido captado por la oreja entra por el conducto auditivo externo, donde existen una serie de pelos y cera para la protección de este. Cuando se produce un sonido, el aire vibra creando una onda sonora, el pabellón auditivo capta la onda sonora y la dirige hacia el canal auditivo. Al final de conducto auditivo se encuentra el tímpano que empieza a vibrar, en el odio medio, el tímpano esta comunicado con la cadena de huesecillos: matillo, yunque y estribo. Que transmiten las vibraciones y las amplifican hasta la ventana oval del oído interno. En el oído interno, un líquido estimula las terminaciones nerviosas, llamadas las celular ciliadas, estas envían impulsos eléctricos a través del nervio auditivo hasta el cerebro. El cerebro decodifica estos impulsos, produciéndose el fenómeno de la audición.

Audímetro


Es un aparato que se conecta a algunos televisores y mide la audiencia de manera permanente y automática; sus datos se utilizan para generar datos estadísticos.

Los audímetros originales para televisión tan sólo eran capaces de medir el número de hogares que se conectaban a un canal de televisión, lo cual ha sido superado con el «audímetro individual», capaz de contar el número de espectadores. Este modelo posee un mando a distancia en el que cada miembro de la familia tiene asignado un número, el cual pulsa cuando va a ver la televisión, de manera que el audímetro conoce en cada momento los miembros de la familia que están ante el televisor. Los botones sobrantes del mando pueden ser utilizados por visitas que no tengan asignado ningún otro.


https://www.redalyc.org/pdf/849/84912053008.pdf


https://planificacionmedios.com/2013/03/27/audimetro-que-es-un-audimetro/



3.28. La voz humana



La voz humana se produce por la vibración de las cuerdas vocales, lo cual genera una onda sonora que es combinación de varias frecuencias y sus correspondientes armónicos. La cavidad buco-nasal sirve para crear ondas cuasiestacionarias por lo que ciertas frecuencias denominadas formantes. Cada segmento de sonido del habla viene caracterizado por un cierto espectro de frecuencias o distribución de la energía sonora en las diferentes frecuencias. El oído humano es capaz de identificar diferentes formantes de dicho sonido y percibir cada sonido con formantes diferentes como cualitativamente diferentes, eso es lo que permite por ejemplo distinguir dos vocales. Típicamente el primer formante, el de frecuencia más baja está relacionado con la abertura de la vocal que en última instancia está relacionada con la frecuencia de las ondas estacionarias que vibran verticalmente en la cavidad. El segundo formante está relacionado con la vibración en la dirección horizontal y está relacionado con si la vocal es anterior, central o posterior.

La voz masculina tiene un tono fundamental de entre 100 y 200 Hz, mientras que la voz femenina es más aguda, típicamente está entre 150 y 300 Hz. Las voces infantiles son aún más agudas. Sin el filtrado por resonancia que produce la cavidad buco nasal nuestras emisiones sonoras no tendrían la claridad necesaria para ser audibles. Ese proceso de filtrado es precisamente lo que permite generar los diversos formantes de cada unidad segmental del habla.

http://www.ehu.eus/acustica/espanol/musica/vohues/vohues.html

3.27. Cualidades del sonido


Hay sonidos de todas clases: largos y cortos, fuertes y débiles, agudos y graves, agradables y desagradables. El sonido ha estado siempre presente en la vida cotidiana del hombre. A lo largo de la historia el ser humano ha inventado una serie de reglas para ordenarlo hasta construir un lenguaje musical.

Las cualidades músicales y físicas del sonido son: la altura o tono, la duración, la intensidad y el timbre.

La altura

 Es la afinación de un sonido; está determinada por la frecuencia fundamental de las ondas sonoras (es lo que permite distinguir entre sonidos graves, agudos o medios) medida en ciclos por segundo o hercios (Hz).Para que los humanos podamos percibir un sonido, éste debe estar comprendido entre el rango de audición de 20 y 20.000 Hz. Por debajo de este rango tenemos los infrasonidos y por encima los ultrasonidos. A esto se le denomina rango de frecuencia audible. Cuanta más edad se tiene, este rango va reduciéndose tanto en graves como en agudos.

Al hablar de este tema con mis estudiantes siempre hago la siguiente relación, los sonidos agudos se parecen a la voz de la mujer y los sonidos graves a la voz del hombre, en cuanto a los sonidos intermedios o medios estos se irán identificando a medida que se ejercita y se desarrolla la capacidad auditiva.

La duración

 Es el tiempo durante el cual se mantiene un sonido, está determinada por la longitud, que indica el tamaño de una onda, que es la distancia entre el principio y el final de una onda completa (ciclo); según esto podemos decir que por duración los sonidos puieden ser largos o cortos. Los únicos instrumentos acústicos que pueden mantener los sonidos el tiempo que quieran, son los de cuerda con arco, como el violín por ejemplo; los de viento dependen de la capacidad pulmonar, y los de percusión, de los golpes. La guitarra necesita, al igual que el piano, de un martilleo que golpee las cuerdas, y solo se escucha el sonido hasta que la cuerda deja de vibrar.

La intensidad

Equivale a hablar de volumen: un sonido puede ser fuerte o débil. Es la cantidad de energía acústica que contiene un sonido. La intensidad viene determinada por la potencia, que a su vez está determinada por la amplitud y nos permite distinguir si el sonido es fuerte o débil.

Los sonidos que percibimos deben superar el umbral auditivo (0 dB) y no llegar al umbral de dolor (140 dB). Esta cualidad la medimos con el sonómetro y los resultados se expresan en decibelios (dB) en honor al científico e inventor Alexander Graham Bell.

En este tema el referente al que hago alución, es la perilla o control de volumen del equipo o reproductor de sonido, a mayor volumen mayor intesidad, a menor volumen menor intensidad.

El timbre

Es la cualidad que permite reconocer la fuente emisora del sonido, por ejemplo, entre la misma nota (tono) con igual intensidad producida por dos instrumentos musicales distintos. Se define como la calidad del sonido. Cada cuerpo sonoro vibra de una forma distinta. Las diferencias se dan no solamente por la naturaleza del cuerpo sonoro (madera, metal, piel tensada, etc.), sino también por la manera de hacerlo sonar (golpear, frotar, rascar)

Una misma nota suena distinta si la toca una flauta, un violín, una trompeta… cada instrumento tiene un timbre que lo identifica o lo diferencia de los demás. Con la voz sucede lo mismo. El sonido dado por un hombre, una mujer, un/a niño/a tienen distinto timbre. El timbre nos permitirá distinguir si la voz es áspera, dulce, ronca o aterciopelada. También influye en la variación del timbre la calidad del material que se utilice. Así pues, el sonido será claro, sordo, agradable o molesto.

https://oscrove.wordpress.com/teoria-musical/el-sonido/las-cualidades-del-sonido/


3.26. Elementos de una onda



Cresta: es la parte más elevado de una onda.

Valle: es la parte más baja de una onda.

Elongación: es el desplazamiento entre la posición de equilibrio y la posición en un instante determinado.

Amplitud: es la máxima elongación, es decir, el desplazamiento desde el punto de equilibrio hasta la cresta o el valle.

Longitud de onda (l): es la distancia comprendida entre dos crestas o dos valles.

Onda completa: cuando ha pasado por todas las elongaciones positivas y negativas.

Período (T): el tiempo transcurrido para que se realice una onda completa.

Frecuencia (f): Es el número de ondas que se suceden en la unidad de tiempo. 

http://titoroa12.galeon.com/elementosda.htm



3.25. Velocidad y energía del sonido



Es la dinámica de propagación de las ondas sonoras. En la atmósfera terrestre es de 343 m/s (a 20 °C de temperatura, con 50 % de humedad y a nivel del mar). La velocidad del sonido varía en función del medio en el que se trasmite. Dado que la velocidad del sonido varía según el medio.

La velocidad o dinámica de propagación de la onda sonora depende de las características del medio en el que se realiza dicha propagación y no de las características de la onda o de la fuerza que la genera. En el aire, el sonido tiene una velocidad de 331,5 m/s cuando: la temperatura es de 0 °C, la presión atmosférica es de 1 atm (nivel del mar) y se presenta una humedad relativa del aire de 0 % (aire seco). Aunque depende muy poco de la presión del aire. La velocidad del sonido depende del tipo de material. Cuando el sonido se desplaza en los sólidos tiene mayor velocidad que en los líquidos, y en los líquidos es más veloz que en los gases. Esto se debe a que las partículas en los sólidos están más cercanas.

3.24. Sonido, Audicion y Onda sonora


Sonido


El sonido es un fenómeno físico que estimula el sentido del oído, también es conocido como la manera particular de sonar que tiene una determinada cosa.Las vibraciones que producen los cuerpos materiales al ser golpeados o rozados se transmiten por un medio elástico, donde se propagan en forma de ondas y al llegar a nuestros oídos, producen la sensación sonora. Un sonido se diferencia de otro por sus características de percepción, las cuales son su intensidad (fuerza con que se percibe), puede ser fuerte o débil; su tono (marca la frecuencia o número de vibraciones por segundo que produce el cuerpo que vibra), puede ser grave y agudo; y por ultimo, su timbre (cualidad que nos permite distinguir entre dos o más sonidos producidos por distintas fuentes sonoras).

Audición


La audición constituye los procesos psico-fisiológicos que proporcionan al ser humano la capacidad de oír.


La audición es la percepción de las ondas sonoras que se propagan por el espacio, en primer lugar, por nuestras orejas, que las transmiten por los conductos auditivos externos hasta que chocan con el tímpano, haciéndolo vibrar. Estas vibraciones generan movimientos oscilantes en la cadena de huesecillos del oído medio (martillo, yunque y estribo), los que son conducidos hasta el perilinfa del caracol. Aquí las ondas mueven los cilios de las células nerviosas del órgano de Corti que, a su vez, estimulan las terminaciones nerviosas del nervio auditivo. O sea, en el órgano de Corti las vibraciones se transforman en impulsos nerviosos, los que son conducidos, finalmente, a la corteza cerebral, en donde se interpretan como sensaciones auditivas. Como también se puede mandar al cerebro para dar la señal de los sonidos que generan las ondas sonoras.

Onda sonora 

Las ondas sonoras son básicamente ondas longitudinales que al llegar a nuestro oído producen el efecto que nosotros conocemos como sonido. Tales ondas, comprendidas en el intervalo de frecuencia de entre 20 y 20.000 vibraciones por segundo, se denominan para simplificar ondas sonoras.


http://www.electrontools.com/Home/WP/2016/09/11/ondas-sonoras-caracteristicas/

3.23. Electrodiagnostico y electroterapia



El electrodiagnóstico es una rama de la medicina que puede aportar datos clínicos duros útiles para el diagnóstico de diversos padecimientos que afectan a los sistemas nerviosos central y periférico

El Electrodiagnóstico es un modelo de intervención fisioterápica que permite una evaluación cualitativa de la placa neuromotora. Se observará la durabilidad contráctil, localización del punto motor más allá de la anatomofisiología neurológica.

El rol de la electricidad con relación al sistema nervioso surgió de la observación de los efectos de la aplicación de la misma al organismo y eventualmente, del descubrimiento que tanto músculos, así como nervios podían ser fuentes de esta energía. Este descubrimiento fue la base del diagnóstico eléctrico o electrodiagnóstico.

El electrodiagnóstico incluye: Electroencefalografía, electromiografía, potenciales provocados por estimulaciones sensoriales (espinales y cerebrales), registro de potenciales de acción de un nervio-conducción nerviosa y electrorretinograma. Todos ellos tienen alguna relación con los escritos de Galvani en 1791.1 Richard Caton en 1875, fue el primero en descubrir el EEG y detectar el cambio en el potencial provocado por estimulación visual y su aplicación a la localización cortical. El electrodiagnóstico se ha diversificado y ampliado enormemente, gracias a los equipos computarizados que utilizan conversión analógica-digital.



La electroterapia

Es una disciplina pseudocientífica que se engloba dentro de la medicina física y rehabilitación y se define como el arte y la ciencia del tratamiento de lesiones y enfermedades por medio de la electricidad.

La electroterapia es la parte de la fisioterapia que, mediante una serie de estímulos físicos producidos por una corriente eléctrica, consigue desencadenar una respuesta fisiológica, la cual se va a traducir en un efecto terapéutico.

Se engloba dentro de este término todas aquellas actuaciones en las cuales, de una forma u otra, se utiliza una corriente eléctrica en el cuerpo humano con fines terapéuticos.



https://electrodiagnostico.com/
http://www.terapia-fisica.com/electroterapia/

3.22. Fisiología de la membrana



La membrana actúa como un filtro selectivo bidireccional. Debido a su interior hidrofóbico, impide prácticamente el paso de todas las moléculas solubles en agua. Sin embargo, su permeabilidad selectiva permite la salida de catabolitos y de algunas sustancias de síntesis, y la entrada hacia el citosol de las sustancias necesarias para el correcto funcionamiento celular.

Receptores de membrana

La transducción de señales es la respuesta de la célula a estímulos externos; la membrana desempeña un papel importante en este proceso. Las células son capaces de responde a estos estímulos y señales externas gracias a los receptores de membrana. Estas moléculas, de naturaleza generalmente proteica, reconocen de forma específica a una determinada molécula-mensaje. Las células dotadas con receptores de membrana reciben el nombre de células diana.

La actividad fisiológica de las células diana se ve afectada por un solo tipo de molécula-mensaje. Sin embargo, una misma molécula-mensaje puede interactuar con varios receptores. Las moléculas-mensaje pueden ser hormonas, neurotransmisores o factores químicos, entre los que se encuentran los factores de crecimiento.

A la molécula-mensaje se la denomina primer mensajero, y al unirse a su receptor de membrana induce en este un cambio en la conformación molecular que produce una señal de activación de una molécula o segundo mensajero. Este actúa estimulando o deprimiendo alguna actividad bioquímica. Entre las moléculas que actúan como segundos mensajeros se encuentran el AMP cíclico y el GMP cíclico.



https://www.infobiologia.net/2011/09/fisiologia-de-la-membrana.html




3.21. La utilidad de la bomba Na y k en la generación de impulso nervioso


La bomba de sodio y potasio cumple un rol muy importante en la producción y transmisión de los impulsos nerviosos y en la contracción de las fibras musculares.



La bomba Na:K es un sistema de transporte de íons Sodio (Na) para fuera de la célula, y de íons Potasio ( K) para dentro de la misma. Realmente poco Sodio sale, o entra, en la célula por el sistema de Ósmosis. Si la ósmosis fuera eficaz, ella haría con que la cantidad de Sodio fuese la misma dentro y fuera de las células.
La bomba sodio-potasio funciona de manera asimétrica, de tal suerte que la corriente sódica de salida es de mayor magnitud que la corriente de entrada potásica. Como consecuencia de este funcionamiento asimétrico se genera el potencial de reposo transmembrana. En cuanto a la salida de calcio, también intervendría una bomba que utiliza energía proveniente de la degradación del ATP. La salida del calcio depende de la gradiente de concentración de sodio y por consiguiente es influida por la bomba sodio-potasio.

La salida del Sodio (Na+) de la célula, hace con que el líquido extracelular tenga un mayor potencial eléctrico positivo. Eso atraerá los íons negativos (Cloro, etc.) para fuera de la célula. Con más Na+ y Cl - fuera de la célula, el agua saldrá de dentro de la célula, por ósmosis, evitando el entumecimiento arriba de lo normal.
Potasio en baja ingesta en la alimentación daña el funcionamiento de la bomba Na+ :K+ que es esencial a la vida normal de todas las células del cuerpo humano




https://es.answers.yahoo.com/question/index?qid=20060724142439AAYM2UP

3.20. Efecto de la electricidad en los seres vivos



Magnitudes eléctricas

En electrotecnia se precisan varias magnitudes fundamentales para caracterizar correctamente un circuito eléctrico y sus propiedades. Sin entrar a profundizar en todas ellas, expondremos los aspectos principales del tema que nos ocupa en base a las tres más conocidas por el público en general: la tensión, la intensidad y la resistencia.

La tensión, también llamada “diferencia de potencial” y más familiarmente “voltaje” está relacionada con la capacidad de trabajo que puede realizar una carga eléctrica. Usando un símil hidráulico, sería la presión del agua, debida a una bomba o a una diferencia de nivel. La unidad se denomina Voltio (V) y, para tener unas referencias, cabe decir que una pila o batería tiene una tensión entre 1 voltio y unas decenas de voltios, la red de alimentación doméstica opera a 230/400 V y una línea aérea de transmisión funciona entre 11.000 y 400.000 voltios.

La intensidad es la cantidad de electricidad “carga eléctrica” que circula a través de un conductor por unidad de tiempo. En hidráulica sería el caudal, los m3 por segundo que pasan por una tubería. La unidad se llama Amperio (A) y, a título de ejemplo, podemos decir que una estufa eléctrica doméstica consume unos 4 a 8 amperios. Hay que destacar la expresión que circula porque respecto a la intensidad es frecuente cometer el error de hablar de “un enchufe, un interruptor, etc.  De 10 A”. Pues bien, la intensidad real en aplicaciones domésticas puede estar entre 0 A -si no hay nada conectado- hasta millares de amperios si el aparato conectado es defectuoso o presenta un cortocircuito. La cifra que se indica en el propio dispositivo es la máxima intensidad aplicable, de modo permanente, a efectos de calentamiento del mismo, no la intensidad real en cualquier momento.

La resistencia es la medida del grado de dificultad que ofrece un cuerpo para que la corriente eléctrica circule por él. En hidráulica sería equivalente a la dificultad de paso del agua por una tubería según su diámetro y su longitud. La unidad es el Ohmio (Ω) que se define como la resistencia que permite el paso de 1 A bajo una diferencia de potencial de 1 V. Para hablar con propiedad, deberíamos referirnos al concepto más general de impedancia (especialmente en corriente alterna) pero la naturaleza esencialmente resistiva del cuerpo humano permite la simplificación realizada.

Las tres magnitudes no son independientes entre sí. Se considera que la resistencia no es una magnitud fundamental, sino que se calcula a partir de la tensión e intensidad mediante la conocida Ley de Ohm:

R (Ω )= E(volt)/I(A)

Al igual que un grifo permite variar el caudal de agua que pasa por una tubería, también es posible que la resistencia eléctrica varíe de un cuerpo humano a otro, y dependa de las superficies de contacto, del estado de humedad de la piel y de otras circunstancias. Esto debe tenerse muy en cuenta al considerar las posibles consecuencias de una descarga eléctrica.

Efectos de la electricidad sobre el cuerpo humano

Cuando alguna parte o partes del cuerpo humano entran en contacto con dos puntos u objetos entre los que existe una diferencia de potencial (voltaje), se establece el paso de una corriente eléctrica a través del cuerpo que puede producir efectos muy diversos, desde un leve cosquilleo hasta la muerte, pasando por contracciones musculares, dificultades o paro respiratorio, caídas, quemaduras, fibrilación ventricular y paro cardíaco. Esto se conoce como choque eléctrico.

El choque eléctrico puede producirse al tocar elementos sometidos a tensión, como cables o barras metálicas desnudas (contacto directo), u objetos, normalmente inofensivos, cuya tensión se debe a fallos y defectos de aislamiento (contacto indirecto).


Esquema de red trifásica

A partir del esquema anterior puede inferirse que si una persona entra en contacto con una de las fases L1, L2, L3 y tiene los pies apoyados en el suelo (o toca alguna masa metálica, tubería, etc. que haga buen contacto con tierra) se cerrará el circuito estableciéndose una corriente que atravesará su cuerpo, produciéndole el choque. Lo mismo ocurrirá si toca la carcasa metálica de algún aparato que presente defectos de aislamiento.

Los factores que determinan la severidad de las lesiones son:

El tipo de corriente, continua (pilas y baterías) o alterna (red eléctrica).

En general, la corriente alterna de baja frecuencia (50 – 60 Hz) que se distribuye a través de la red puede llegar a ser hasta 3 o 5 veces más peligrosa que la continua. Puesto que se trata del tipo de corriente al que habitualmente estamos expuestos en viviendas, locales, comercios, oficinas, etc., nos centraremos en los riesgos que lleva asociados la alterna.





https://losmundosdebrana.com/2014/11/25/efectos-de-la-corriente-electrica-en-el-cuerpo-humano-ii-la-edad-de-la-gran-potencia/



3.19. Sistema bioelectrico




El Sistema Cuántico Bio-Eléctrico es una nueva herramienta que analiza este fenómeno. La energía y la baja frecuencia magnética del cuerpo humano se captan al sostener el sensor, y a continuación el equipo las amplifica y las analiza mediante el microprocesador que incorpora. Los datos se comparan con el espectro cuántico de resonancia magnética estándar de enfermedades y de nutrición, así como con otros indicadores incorporados en el equipo para diagnosticar si las formas de las ondas presentan irregularidades a través del uso de la aproximación de Fourier. De esta manera se puede realizar el análisis y diagnóstico del estado de salud y obtener los principales problemas del paciente, también como distintas propuestas estándares de curación o prevención, basándose en el resultado del análisis de la forma de la onda.

El método de análisis cuántico de resonancia magnética es un emergente método de detección espectral, rápido, preciso y no invasivo, lo que lo hace especialmente apropiado para la comparación de los efectos de curación de diferentes medicinas y productos médicos, y para la comprobación de posibles estados anormales de salud. Los principales elementos de análisis ascienden a más de treinta, e incluyen los siguientes sistemas:

·         Cardiovascular y Cerebro vascular

·         Función Gastrointestinal

·         Función de la Vesícula Biliar

·         Función Pancreática

·         Función Renal

·         Función Pulmonar

·         Sistema Nervioso

·         Padecimientos Oseos

·         Densidad Mineral Osea

·         Enfermedad de Hueso Reumatoide

·         Glucosa en la Sangre

·         Condición Física

·         Toxinas

·         Oligoelementos

·         Vitaminas

·         Aminoácidos

·         Coenzimas

·         Metales Pesados

https://www.analizadorcuantico.com.mx/





3.38 Estructura y generación del tubo de Coolidge

El tubo de coolidge, también conocido como «tubo de cátodocaliente», ha estado en uso desde entonces con algunas modificaciones sobre el ...